Publications of 2014

1. Bommali, R.K., Ahmad, S., Sharma, N., Srivastava, P., and Prakash, G.V., “Narrow band photocurrent response from partially phase separated a-SiNx:H thin films,” J. Appl. Phys. 116(11):113501, 2014, doi:10.1063/1.4895600.

2. Bommali, R.K., Ghosh, S., Prakash, G.V., Gao, K., Zhou, S., Khan, S.A., and Srivastava, P., “Hydrogen plasma induced modification of photoluminescence from a-SiNx:H thin films,” J. Appl. Phys. 115(5):053525, 2014, doi:10.1063/1.4864255.

3. Kanaujia, P.K., Bhatnagar, M.C., and Prakash, G.V., “Effect of volatile solvent infiltration on optical and electrical characteristics of porous photonic structures,” RSC Adv. 4(41):21246–21253, 2014, doi:10.1039/C3RA46515B.

4. Nageswara Rao, K., Singh, A., and Vijaya Prakash, G., “Synthesis, structure and optical studies of inorganic–organic hybrid semiconductor, (H3NC6H4CH2NH3) PbI4,” Mater. Res. Bull. 52:78–81, 2014, doi:10.1016/j.materresbull.2013.12.063.

5. Shakya, S. and Prakash, G.V., “Template assisted growth of microporous structures of CdSe x Te1 - x and thin film photocurrent studies,” Mater. Res. Express 1(3):035037, 2014, doi:10.1088/2053-1591/1/3/035037.

6. Agarwal, K. and Mehta, B.R., “Structural, electrical, and thermoelectric properties of bismuth telluride: Silicon/carbon nanocomposites thin films,” J. Appl. Phys. 116(8):083518, 2014, doi:10.1063/1.4894145.

7. Agrawal, M., Jain, A., Sridhara Rao, D.V., Pandey, A., Goyal, A., Kumar, A., Lamba, S., Mehta, B.R., Muraleedharan, K., and Muralidharan, R., “Nanoharvesting of GaN nanowires on Si (211) substrates by plasma-assisted molecular beam epitaxy,” J. Cryst. Growth 402:37–41, 2014, doi:10.1016/j.jcrysgro.2014.05.004.

8. Kumar, R., Mehta, B.R., Bhatnagar, M., S, R., Mahapatra, S., Salkalachen, S., and Jhawar, P., “Graphene as a transparent conducting and surface field layer in planar Si solar cells,” Nanoscale Res. Lett. 9(1):349, 2014, doi:10.1186/1556-276X-9- 349.

9. Sengar, S.K., Mehta, B.R., and Govind, “Size and alloying induced shift in core and valence bands of Pd-Ag and Pd-Cu nanoparticles,” J. Appl. Phys. 115(12):124301, 2014, doi:10.1063/1.4869437.

10. Sengar, S.K., Mehta, B.R., and Kulriya, P.K., “Temperature, pressure, and size dependence of Pd-H interaction in size selected Pd-Ag and Pd-Cu alloy nanoparticles: In-situ X-ray diffraction studies,” J. Appl. Phys. 115(11):114308, 2014, doi:10.1063/1.4868903. 11. Singh, B. and Mehta, B.R., “Relationship between nature of metal-oxide contacts and resistive switching properties of copper oxide thin film based devices,” Thin Solid Films 569:35–43, 2014, doi:10.1016/j.tsf.2014.08.030.

12. Kumar, M. and Joseph, J., “Digitally reconfigurable complex two-dimensional dual-lattice structure by optical phase engineering,” Appl. Opt. 53(7):1333, 2014, doi:10.1364/AO.53.001333.

13. Kumar, M. and Joseph, J., “Embedding multiple nondiffracting defect sites in periodic lattice wavefield by optical phase engineering,” J. Nanophotonics 8(1):083894–083894, 2014, doi:10.1117/1.JNP.8.083894.

14. Kumar, M. and Joseph, J., “Generating a hexagonal lattice wave-field with a gradient basis structure,” Opt. Lett. 39(8):2459, 2014, doi:10.1364/OL.39.002459.

15. Kumar, M. and Joseph, J., “Optical generation of a spatially variant twodimensional lattice structure by using a phase only spatial light modulator,” Appl. Phys. Lett. 105(5):051102, 2014, doi:10.1063/1.4892447.

16. Sidharthan, R., Kumar, M., Joseph, J., and Murukeshan, V.M., “Realization of body centered tetragonal, β-tin and diamond type structures using five beam interference,” Opt. Commun. 322:160–163, 2014, doi:10.1016/j.optcom.2014.02.038.

17. Xavier, J. and Joseph, J., “Complex photonic lattices embedded with tailored intrinsic defects by a dynamically reconfigurable single step interferometric approach,” Appl. Phys. Lett. 104(8):081104, 2014, doi:10.1063/1.4866660.

18. Khanchandani, S., Kundu, S., Patra, A., and Ganguli, A.K., “Band gap tuning of ZnO/In2S3 Core/Shell nanorod arrays for enhanced visible-light-driven 19photocatalysis,” J. Phys. Chem. C 117(11):5558–5567, 2013, doi:10.1021/jp310495j.

19. Basu, M., Garg, N., and Ganguli, A.K., “A type-II semiconductor (ZnO/CuS heterostructure) for visible light photocatalysis,” J. Mater. Chem. A 2(20):7517– 7525, 2014, doi:10.1039/C3TA15446G.

20. Garg, N., Basu, M., and Ganguli, A.K., “Nickel cobaltite nanostructures with enhanced supercapacitance activity,” J. Phys. Chem. C 118(31):17332–17341, 2014, doi:10.1021/jp5039738.

21. Kumar, B., Saha, S., Ganguly, A., and Ganguli, A.K., “A facile low temperature (350 °C) synthesis of Cu2O nanoparticles and their electrocatalytic and photocatalytic properties,” RSC Adv. 4(23):12043–12049, 2014, doi:10.1039/C3RA46994H.

22. Kumar, S., Khanchandani, S., Thirumal, M., and Ganguli, A.K., “Achieving Enhanced Visible-Light-Driven Photocatalysis Using Type-II NaNbO3/CdS Core/Shell Heterostructures,” ACS Appl. Mater. Interfaces 6(15):13221–13233, 2014, doi:10.1021/am503055n.

23. Sharma, M., Das, D., Baruah, A., Jain, A., and Ganguli, A.K., “Design of porous silica supported tantalum oxide hollow spheres showing enhanced photocatalytic activity,” Langmuir 30(11):3199–3208, 2014, doi:10.1021/la500167a.

24. Sharma, S. and Ganguli, A.K., “Spherical-to-Cylindrical transformation of reverse micelles and their templating effect on the growth of nanostructures,” J. Phys. Chem. B 118(15):4122–4131, 2014, doi:10.1021/jp500697j.

25. Goel, P., Singh, K., and Singh, J.P., “Polarization dependent diffraction from anisotropic Ag nanorods grown on DVD grating templates by oblique angle deposition,” RSC Adv. 4(22):11130–11135, 2014, doi:10.1039/C3RA45940C.

26. Kumar, S., Goel, P., Singh, D.P., and Singh, J.P., “Highly sensitive superhydrophobic Ag nanorods array substrates for surface enhanced fluorescence studies,” Appl. Phys. Lett. 104(2):023107, 2014, doi:10.1063/1.4861836.

27. Yadav, K., Mehta, B.R., and Singh, J.P., “Presence of metal-oxide interface enhanced photoluminescence from In–In2O3 core–shell nanorods,” RSC Adv. 5(2):1581–1586, 2014, doi:10.1039/C4RA11202D.

28. Yadav, K., Mehta, B.R., and Singh, J.P., “Template-free synthesis of vertically aligned crystalline indium oxide nanotube arrays by pulsed argon flow in a tubein-tube chemical vapor deposition system,” J. Mater. Chem. C 2(31):6362–6369, 2014, doi:10.1039/C4TC00491D.

29. Yadav, K., Mehta, B.R., and Singh, J.P., “Tunable synthesis of single-crystalline zno hexagonal microtubes and nanowires,” Adv. Sci. Lett. 20(7-8):1594–1596, 2014, doi:10.1166/asl.2014.5536.

30. Goel, P. and Singh, J.P., “Fabrication of silver nanorods embedded in PDMS film and its application for strain sensing,” J. Phys. Appl. Phys. 48(44):445303, 2014, doi:10.1088/0022-3727/48/44/445303.

31. Dadwal, U., Kumar, P., Moutanabbir, O., Reiche, M., and Singh, R., “Effect of implantation temperature on the H-induced microstructural damage in AlN,” J. Alloys Compd. 588:300–304, 2014, doi:10.1016/j.jallcom.2013.10.227.

32. Kumar, A., Kumar, M., Kaur, R., Joshi, A.G., Vinayak, S., and Singh, R., “Barrier height enhancement of Ni/GaN Schottky diode using Ru based passivation scheme,” Appl. Phys. Lett. 104(13):133510, 2014, doi:10.1063/1.4870624.

33. Kumar, A., Kumar, T., Hähnel, A., Kanjilal, D., and Singh, R., “Dynamics of modification of Ni/n-GaN Schottky barrier diodes irradiated at low temperature by 200 MeV Ag14+ ions,” Appl. Phys. Lett. 104(3):033507, 2014, doi:10.1063/1.4862471.

34. Kumar, A., Singh, T., Kumar, M., and Singh, R., “Sulphide passivation of GaN based Schottky diodes,” Curr. Appl. Phys. 14(3):491–495, 2014, doi:10.1016/j.cap.2013.12.021.

35. Kumar, M., Becker, M., Wernicke, T., and Singh, R., “Multiphonon resonant Raman scattering in non-polar GaN epilayers,” Appl. Phys. Lett. 105(14):142106, 2014, doi:10.1063/1.4897643.

36. Kumar, M., Kumar, A., Thapa, S.B., Christiansen, S., and Singh, R., “XPS study of triangular GaN nano/micro-needles grown by MOCVD technique,” Mater. Sci. Eng. B 186:89–93, 2014, doi:10.1016/j.mseb.2014.03.010.

37. Kumar, S., Sarau, G., Tessarek, C., Bashouti, M.Y., Hähnel, A., Christiansen, S., and Singh, R., “Study of iron-catalysed growth of β -Ga 2 O 3 nanowires and their detailed characterization using TEM, Raman and cathodoluminescence techniques,” J. Phys. Appl. Phys. 47(43):435101, 2014, doi:10.1088/0022- 3727/47/43/435101.

38. Kumar, S., Tessarek, C., Christiansen, S., and Singh, R., “A comparative study of β-Ga2O3 nanowires grown on different substrates using CVD technique,” J. Alloys Compd. 587:812–818, 2014, doi:10.1016/j.jallcom.2013.10.165.

39. Khaneja, M., Ghosh, S., Chaudhury, P.K., and Kumar, V., “Simulation of field emission behavior from multiple carbon nanotubes in an integrated gate triode configuration,” Phys. E Low-Dimens. Syst. Nanostructures 63:268–271, 2014, doi:10.1016/j.physe.2014.06.002.

40. Nadda, K. and Kumar, M.J., “Thin-Film bipolar transistors on recrystallized polycrystalline silicon without impurity doped junctions: Proposal and investigation,” J. Disp2 Technol. 10(7):590–594, 2014, doi:10.1109/JDT.2014.2310124.

41. Vishnoi, R. and Kumar, M.J., “A Pseudo 2D-analytical model of dual material gate all-around nanowire tunneling FET,” IEEE Trans. Electron Devices 61(7):2264–2270, 2014, doi:10.1109/TED.2014.2321977.