Publications of 2016


1. Peter, E., Thomas, A., Dhawan, A., and Sarangi, S.R., “Active microring based tunable optical power splitters,” Opt. Commun. 359:311–315, 2016, doi:10.1016/j.optcom.2015.09.095

2. Singh, S., and Khare, N., “ Defects/Strain influenced magnetic properties and inverse of surface spin canting effect in single domain CoFe2O4 nanoparticles. Applied Surface Science. 364, 783-788, 2016. http://dx.doi.org/10.1016/j.apsusc.2015.12.205.

3. Munjal, S., Khare, N., Nehate, C., and Koul, V., “Water dispersible CoFe2O4 nanoparticles with improved colloidal stability for biomedical applications” Journal of Magnetism and Magnetic Materials, 404, 166-169, 2016. http://dx.doi.org/10.1016/j.jmmm.2015.12.017

4. Sharma, S., Singh, S., and Khare, N., “Synthesis of polyaniline/CdS (nanoflowers and nanorods) nanocomposites: a comparative study towards enhanced photocatalytic activity for degradation of organic dye” Colloid and Polymer Science, 294 (5), 917-926, 2016. DOI: 10.1007/s00396-016-3844-4.

5. Singh, S., Khare, N., Sivakumar, B., Aravind, A., and Sakthi kumar, D. N., “Multifunctional CdS/CoFe2O4 fluorescent/magnetic core/shell nanocomposite structure for bio-applications”. Materials Research Express, 3 (4), 045024, 2016. http://dx.doi.org/10.1088/2053-1591/3/4/045024

6. Khare, N., Ansari, Hoye, M. Z., Iza, R. L. Z. D. C., and MacManus-Driscoll, J. L., “Elucidation of barrier homogeneity in ZnO/P3HT:PCBM junctions through temperature dependent I–V characteristics” J. Phys. D: Appl. Phys. 49, 275302, 2016. http://dx.doi.org/10.1088/0022-3727/49/27/275302

7. Sharma, B., Sarothia, Y., Singh, R., Kan, Z., Keivanidis, P.E., and Jacob, J., “Synthesis and characterization of light-absorbing cyclopentadithiophene-based donor–acceptor copolymers,” Polym. Int. 65(1):57–65, 2016, doi:10.1002/pi.5024.

8. Agarwal, K., Kaushik, V., Varandani, D., Dhar, A., and Mehta, B.R., “Nanoscale thermoelectric properties of Bi2Te3 – Graphene nanocomposites: Conducting atomic force, scanning thermal and kelvin probe microscopy studies,” J. Alloys Compd. 681:394–401, 2016, doi:10.1016/j.jallcom.2016.04.161.

9. Kumar, R., Varandani, D., and Mehta, B.R., “Nanoscale interface formation and charge transfer in graphene/silicon Schottky junctions; KPFM and CAFM studies,” Carbon 98:41–49, 2016, doi:10.1016/j.carbon.2015.10.075.

10. Sahoo, P.K., Joseph, J., Yukino, R., Sandhu, A., “High sensitivity refractive index sensor based on simple diffraction from phase grating”, Opt. Lett. 41 (2016) 2101. doi:10.1364/OL.41.002101.

11. Jindal, A., Gautam, D.K., and Basu, S., “Electrocatalytic activity of electrospun carbon nitride-polyacrylonitrile nanofiber towards oxygen reduction reactions,” J. Electroanal. Chem. 775:198–204, 2016, doi:10.1016/j.jelechem.2016.05.051.

12. Shankarayan, R. and Mishra, P., “Permeation Behaviour of Lysozyme-Loaded Poly(Lactic-co-Glycolic Acid) Nanoparticles Through Porcine Oesophageal Mucosa and Its Microscopic Study,” J. Nanopharmaceutics Drug Deliv. 3(1):85– 96, 2016, doi:10.1166/jnd.2015.1078.

13. Khanchandani, S., Kumar, S., and Ganguli, A.K., “Comparative study of TiO2/CuS core/shell and composite nanostructures for efficient visible light photocatalysis,” ACS Sustain. Chem. Eng. 4(3):1487–1499, 2016, doi:10.1021/acssuschemeng.5b01460.

14. Kumar, B., Rao, G.K., Saha, S., and Ganguli, A.K., “Cu-Based Nanocomposites as Multifunctional Catalysts,” Chemphyschem Eur. J. Chem. Phys. Phys. Chem. 17(1):155–161, 2016, doi:10.1002/cphc.201500944.

15. Ojha, K., Saha, S., Kolev, H., Kumar, B., and Ganguli, A.K., “Composites of graphene-Mo2C rods: highly active and stable electrocatalyst for hydrogen evolution reaction,” Electrochimica Acta 193:268–274, 2016, doi:10.1016/j.electacta.2016.02.081.

16. Ojha, K., Saha, S., Kumar, B., Hazra, K.S., and Ganguli, A.K., “Controlling the morphology and efficiency of nanostructured molybdenum nitride electrocatalysts for the hydrogen evolution reaction,” Chem Cat Chem 8(6):1218–1225, 2016, doi:10.1002/cctc.201501341.

17. Saha, S., Ramanujachary, K.V., Lofland, S.E., and Ganguli, A.K., “Cu-Co-Ni alloys: an efficient and durable electrocatalyst in acidic media,” Mater. Res. Express 3(1):016501, 2016, doi:10.1088/2053-1591/3/1/016501.

18. Saha, S., Vaidya, S., Ramanujachary, K.V., Lofland, S.E., and Ganguli, A.K., “Ternary alloy nanocatalysts for hydrogen evolution reaction,” Bull. Mater. Sci. 39(2):433–436, 2016, doi:10.1007/s12034-016-1182-2.

19. Saji, P., Ganguli, A.K., Bhat, M.A., and Ingole, P.P., “Probing the crystal structure, composition-dependent absolute energy levels, and electrocatalytic properties of silver indium sulfide nanostructures,” Chem Phys Chem 17(8):1195–1203, 2016, doi:10.1002/cphc.201501054.

20. Khanchandani, S., Kumar, S., and Ganguli, A.K., “Comparative Study of TiO2/CuS Core/Shell and Composite Nanostructures for Efficient Visible Light Photocatalysis,” ACS Sustain. Chem. Eng. 4(3):1487–1499, 2016, doi:10.1021/acssuschemeng.5b01460.

21. Kumar, B., Rao, G.K., Saha, S., and Ganguli, A.K., “Cu-Based Nanocomposites as Multifunctional Catalysts,” Chemphyschem Eur. J. Chem. Phys. Phys. Chem. 17(1):155–161, 2016, doi:10.1002/cphc.201500944.

22. Ojha, K., Saha, S., Kolev, H., Kumar, B., and Ganguli, A.K., “Composites of graphene-Mo2C rods: highly active and stable electrocatalyst for hydrogen evolution reaction,” Electrochimica Acta 193:268–274, 2016, doi:10.1016/j.electacta.2016.02.081.

23. Ojha, K., Saha, S., Kumar, B., Hazra, K.S., and Ganguli, A.K., “Controlling the Morphology and Efficiency of Nanostructured Molybdenum Nitride Electrocatalysts for the Hydrogen Evolution Reaction,” ChemCatChem 8(6):1218–1225, 2016, doi:10.1002/cctc.201501341.

24. Saha, S., Ramanujachary, K.V., Lofland, S.E., and Ganguli, A.K., “Cu-Co-Ni alloys: an efficient and durable electrocatalyst in acidic media,” Mater. Res. Express 3(1):016501, 2016, doi:10.1088/2053-1591/3/1/016501.

25. Saji, P., Ganguli, A.K., Bhat, M.A., and Ingole, P.P., “Probing the Crystal Structure, Composition-Dependent Absolute Energy Levels, and Electrocatalytic Properties of Silver Indium Sulfide Nanostructures,” ChemPhysChem 17(8):1195– 1203, 2016, doi:10.1002/cphc.201501054.

26. Design of Cu based nanocomposites as multifunctional catalysts. B. Kumar, G. K. Rao, S. Saha and A. K. Ganguli, Chem Phys Chem. 2016, 17, 155-161.

27. Kumar, S., Lodhi, D, K., and Singh, J. P., “Highly sensitive multifunctional recyclable Ag–TiO2nanorod SERS substrates for photocatalytic degradation and detection of dye molecules”, RSC Advances, 6, 45120-45126. 2016, DOI: 10.1039/C6RA06163J

28. Yadav, K., Gahlaut, S. K., Mehta, B. R., and Singh, J. P., “Photoluminescence based H2 and O2 gas sensing by ZnO nanowires" Applied Physics Letters 108, 071602, 2016,. http://dx.doi.org/10.1063/1.4942092

29. Bag, R.K., Singh, S., Tyagi, R., Pandya, D.K., and Singh, R., “Study of Selfinduced growth of AlGaAs nanoneedles on silicon substrates using metal organic chemical vapor deposition technique,” J. Nanosci. Nanotechnol. 16(1):973–980, 2016, doi:10.1166/jnn.2016.11767.

30. Dadwal, U., Kumar, P., Hähnel, A., and Singh, R., “Physical mechanism of surface blistering process in H-implanted Ge,” J. Mater. Sci. 51(11):5397–5402, 2016, doi:10.1007/s10853-016-9842-6.

31. Garg, M., Kumar, A., Nagarajan, S., Sopanen, M., and Singh, R., “Investigation of significantly high barrier height in Cu/GaN Schottky diode,” AIP Adv. 6(1):015206, 2016, doi:10.1063/1.4939936.

32. Kumar, A., Kashid, R., Ghosh, A., Kumar, V., and Singh, R., “Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode,” ACS Appl. Mater. Interfaces 8(12):8213–8223, 2016, doi:10.1021/acsami.5b12393.

33. Pathak, C.S., Singh, J.P., and Singh, R., “Modification of electrical properties of PEDOT:PSS/p-Si heterojunction diodes by doping with dimethyl sulfoxide,” Chem. Phys. Lett. 652:162–166, 2016, doi:10.1016/j.cplett.2016.04.029.

34. Kumar, A., Heilmann, M., Latzel, M., Kapoor, R., Sharma, I., Göbelt, M., Christiansen, S.H., Kumar, V., and Singh, R., “Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes,” Sci. Rep. 6:27553, 2016, doi:10.1038/srep27553.

35. Kumar, S., Dhara, S., Agarwal, R., and Singh, R., “Study of photoconduction properties of CVD grown β-Ga2O3 nanowires,” J. Alloys Compd. 683:143–148, 2016, doi:10.1016/j.jallcom.2016.05.079.

36. Kumar, A., Kashid, R., Ghosh, A., Kumar, V., and Singh, R., “Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode,” ACS Appl. Mater. Interfaces 8(12):8213–8223, 2016, doi:10.1021/acsami.5b12393.

37. Peter, E., Thomas, A., Dhawan, A., and Sarangi, S.R., “Active microring based tunable optical power splitters,” Opt. Commun. 359:311–315, 2016, doi:10.1016/j.optcom.2015.09.095.

38. Sarker, D., Bhattacharya, S., Rodriguez, R.D., Sheremet, E., Kabiraj, D., Avasthi, D.K., Zahn, D.R.T., Schmidt, H., Srivastava, P., and Ghosh, S., “Unraveling the origin of enhanced field emission from irradiated FeCo-SiO2 nanocomposites: A combined experimental and first-principles based study,” ACS Appl. Mater. Interfaces 8(7):4994–5001, 2016, doi:10.1021/acsami.5b07937.

39. Thouti, E., Kumar, S., and Komarala, V.K., “Enhancement of minority carrier lifetimes in n- and p-type silicon wafers using silver nanoparticle layers,” J. Phys. Appl. Phys. 49(1):015302, 2016, doi:10.1088/0022-3727/49/1/015302.

40. Tiwari, D., Sisodia, N., Sharma, R., Dürrenfeld, P., Åkerman, J., and Muduli, P.K., “Enhancement of spin-torque diode sensitivity in a magnetic tunnel junction by parametric synchronization,” Appl. Phys. Lett. 108(8):082402, 2016, doi:10.1063/1.4942398.

41. Thomas, A., Trivedi, R., and Dhawan, A., “Plane wave scattering from a plasmonic nanowire array spacer-separated from a plasmonic film,” Mater. Res. Express 3(6):065004, 2016, doi:10.1088/2053-1591/3/6/065004.

42. Singh, S., Upadhyay, M., Sharma, J., Gupta, S., Vivekanandan, P., and Elangovan, R., “A portable immunomagnetic cell capture system to accelerate culture diagnosis of bacterial infections,” Analyst 141(11):3358–3366, 2016, doi:10.1039/C6AN00291A.

43. Sharma, Y. and Dhawan, A., “Plasmonic ‘nano-fingers on nanowires’ as SERS substrates,” Opt. Lett. 41(9):2085, 2016, doi:10.1364/OL.41.002085. 44. Ashish Kumar, Somna Mahajan, Seema Vinayak and R. Singh, "Studies on the thermal stability of Ni/n-GaN and Pt/n-GaN Schottky barrier diodes", Materials Research Express, 3, 085901, 2016, doi:10.1088/2053-1591/3/8/085901

45) Sajal Dhara, Ritesh Agarwal and R. Singh, "Study of photoconduction properties of CVD grown ß-Ga2O3 nanowires, Sudheer Kumar", Journal of Alloys and Compounds, 683, 143-148 ,2016, http://dx.doi.org/10.1016/j.jallcom.2016.05.079

46) Ashutosh Kumar, M. Heilmann, Michael Latzel, Raman Kapoor, Intu Sharma, M. Göbelt, Silke H. Christiansen, Vikram Kumar and Rajendra Singh, "Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes", Scientific Reports, 6, 27553, 2016, doi:10.1038/srep27553

47) Ashutosh Kumar, Ranjit Kashid, Arindam Ghosh, Vikram Kumar and Rajendra Singh, "Enhanced thermionic emission and low 1/f noise in exfoliated graphene/GaN Schottky barrier diode", ACS Applied Materials and Interfaces, 8, 8213-8223 ,2016, DOI: 10.1021/acsami.5b12393

48) Manjari Garg, Ashutosh Kumar, S. Nagarajan, M. Sopanen and R. Singh, "Investigation of significantly high barrier height in Cu/GaN Schottky diode",AIP Advances, 6, 015206 ,2016, doi: http://dx.doi.org/10.1063/1.4939936

49) C. S. Pathak, J. P. Singh and R. Singh, "Modification of electrical properties of PEDOT:PSS/p-Si heterojunction diodes by doping with dimethyl sulfoxide", Chemical Physics Letters, 652, 162-166 (2016), https://doi.org/10.1016/j.cplett.2016.04.029

50) C. S. Pathak, J. P. Singh and R. Singh, "Temperature dependent electrical characteristics of PEDOT:PSS/n-Si heterojunction diode", Invertis Journal of Science and Technology, 9, 1-5 ,2016, Temperature dependent electrical characteristics of PEDOT:PSS/n-Si heterojunction diode

51) A. Hähnel and R. Singh, "Physical mechanism of the surface blistering of H-implanted Ge, U. Dadwal, Praveen Kumar", Journal of Materials Science, 51, 5397-5402, 2016, DOI: https://doi.org/10.1007/s10853-016-9842-6

52) Rajesh K. Bag, J. Lohani, R. Tyagi, D. K. Pandya and R. Singh, "MOVPE growth of in situ Ga catalyzed AlGaAs nanowires on sapphire substrate"; Journal of Materials Science: Materials in Electronics, 27, 2335-2341, 2016, DOI: https://doi.org/10.1007/s10854-015-4030-z

53) R. K. Bag, S. Singh, R. Tyagi, D. K. Pandya and R. Singh,"Study of self-induced growth of AlGaAs nanoneedles on silicon substrates using metal organic chemical vapor deposition technique", Journal of Nanoscience and Nanotechnology, 16, 973-980 (2016), DOI: https://doi.org/10.1166/jnn.2016.11767